9 research outputs found

    Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing

    Full text link
    Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data. Previous work has primarily considered silver-standard data augmentation or zero-shot methods, however, exploiting few-shot gold data is comparatively unexplored. We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between probabilistic latent variables using Optimal Transport. We demonstrate how this direct guidance improves parsing from natural languages using fewer examples and less training. We evaluate our method on two datasets, MTOP and MultiATIS++SQL, establishing state-of-the-art results under a few-shot cross-lingual regime. Ablation studies further reveal that our method improves performance even without parallel input translations. In addition, we show that our model better captures cross-lingual structure in the latent space to improve semantic representation similarity.Comment: Accepted to TACL 2023. Pre-MIT Press publication. 17 pages, 3 figures, 6 table

    Extrinsic Evaluation of Machine Translation Metrics

    Full text link
    Automatic machine translation (MT) metrics are widely used to distinguish the translation qualities of machine translation systems across relatively large test sets (system-level evaluation). However, it is unclear if automatic metrics are reliable at distinguishing good translations from bad translations at the sentence level (segment-level evaluation). In this paper, we investigate how useful MT metrics are at detecting the success of a machine translation component when placed in a larger platform with a downstream task. We evaluate the segment-level performance of the most widely used MT metrics (chrF, COMET, BERTScore, etc.) on three downstream cross-lingual tasks (dialogue state tracking, question answering, and semantic parsing). For each task, we only have access to a monolingual task-specific model. We calculate the correlation between the metric's ability to predict a good/bad translation with the success/failure on the final task for the Translate-Test setup. Our experiments demonstrate that all metrics exhibit negligible correlation with the extrinsic evaluation of the downstream outcomes. We also find that the scores provided by neural metrics are not interpretable mostly because of undefined ranges. We synthesise our analysis into recommendations for future MT metrics to produce labels rather than scores for more informative interaction between machine translation and multilingual language understanding.Comment: ACL 2023 Camera Read

    On the Impact of Fixed Point Hardware for Optical Fiber Nonlinearity Compensation Algorithms

    Get PDF
    Nonlinearity mitigation using digital signal processing has been shown to increase the achievable data rates of optical fiber transmission links. One especially effective technique is digital back propagation (DBP), an algorithm capable of simultaneously compensating for linear and nonlinear channel distortions. The most significant barrier to implementing this technique, however, is its high computational complexity. In recent years, there have been several proposed alternatives to DBP with reduced computational complexity, although such techniques have not demonstrated performance benefits commensurate with the complexity of implementation. In order to fully characterize the computational requirements of DBP, there is a need to model the algorithm behavior when constrained to the logic used in a digital coherent receiver. Such a model allows for the analysis of any signal recovery algorithm in terms of true hardware complexity which, crucially, includes the bit-depth of the multiplication operation. With a limited bit depth, there is quantization noise, introduced with each arithmetic operation, and it can no longer be assumed that the conventional DBP algorithm will outperform its low complexity alternatives. In this work, DBP and a single nonlinear step DBP implementation, the \textit{Enhanced Split Step Fourier} method (ESSFM), were compared with linear equalization using a generic software model of fixed point hardware. The requirements of bit depth and fast Fourier transform (FFT) size are discussed to examine the optimal operating regimes for these two schemes of digital nonlinearity compensation. For a 1000 km transmission system, it was found that (assuming an optimized FFT size), in terms of SNR, the ESSFM algorithm outperformed the conventional DBP for all hardware resolutions up to 13 bits.Comment: 8 pages, 8 figures, journal submissio

    A comparative analysis of body psychotherapy and dance movement psychotherapy from a European perspective

    Get PDF

    Ground- and Excited-State Electronic Structure of an emissive pyrazine-bridged Ruthenium (II) dinuclear complex

    Get PDF
    The synthesis, characterization, and electrochemical, photophysical, and photochemical properties of the binuclear compounds [(Ru(H8-bpy)2)2((Metr)2Pz)](PF6)2 and [(Ru(D8-bpy)2)2((Metr)2Pz)](PF6)2, where bpy is 2,2'-bipyridine and H2(Metr)2Pz is the planar ligand 2,5-bis(5'-methyl-4'H-[1,2,4]triaz-3'-yl)pyrazine, are reported. Electrochemical and spectro-electrochemical investigations indicate that the ground-state interaction between each metal center is predominantly electrostatic and in the mixed-valence form only a low level of ground-state delocalization is present. Resonance Raman, transient, and time-resolved spectroscopies enable a detailed assignment to be made of the excited-state photophysical properties of the complexes. Deuteriation is employed to both facilitate spectroscopic characterization and investigate the nature of the lowest excited states.
    corecore